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From Archimedes and Euclid to Hamilton and Poincaré
Symplectic maps of 



2n  are basic objects 
of Hamiltonian mechanics, and the time t 
map of a Hamiltonian system’s position-
momentum pair is symplectic. Symplectic 
maps of 



2  are the area-preserving ones.
I recently realized that the Archimedian 

law of the lever amounts to an area-preser-
vation property of a simple map of 



2,  as 
described next. Afterwards, I will reference 
an analogy between the Archimedian lever 
on one hand and the Hamiltonian mechan-
ics on the other.

Figure 1 shows a seesaw in equilibrium, 
pressed at both ends. Archimedes’ law of 
the lever gives the condition for the equilib-
rium, fl FL= ,  i.e.,
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s= ,  according to 

Euclid. To summarize, we have the “Euclid-
Archimedes map,” ( , ) ( , ),s f S F  given by
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where l=L l/ .  This map is clearly area-
preserving, but for a reason deeper than the 

explicit form (1). Indeed, let us cyclically 
move the two fingers in Figure 1 so that 
the positions and the forces return to their 
original values. We end up 
doing zero work:

        
f ds F dS
 ∫ ∫+ − =( ) .0 	 	        (2)                    

The minus sign is due to the fact that 
the right finger presses with force -F.  
During the cyclic motion, the point ( , )s f  

describes a closed 
curve g  in the 
plane, while the point 
( , ) ( , )S F s f=j  
describes the 
image curve ϕ γ( ).  
Therefore, the zero-
work condition 
(2) amounts to the 
equality of areas 
inside g  and ϕ γ( ).  
Incidentally, (2) is 
a compact way of 
saying that the lever 
is not a perpetual 
motion machine.

If the board 
can flex, as in Figure 2, then the map 
( , ) ( , )s f S F  is no longer given by (1), 
but is still area-preserving; the above proof 
applies without change. 

Seesaw and Hamiltonian 
Dynamics

Remarkably, the Hamiltonian flow is 
symplectic for the same reason that the 
“seesaw map” j  is area-preserving.1 To 
make sense of the last sentence, I must 
specify the analogy between the seesaw in 
Figure 2 on one hand and a Hamiltonian 
system on the other. The following explana-
tion outlines this analogy (a full discussion 
can be found in [1]). Consider a mechanical 

1  or symplectic, if we allow more than one 
degree of freedom to move the endpoints.

system with the Lagrangian L, depending 
on generalized position and velocity. Let 
us fix two points ( , )0 q and ( , )T Q  in time-

space and define the action 

A q Q L r t r t dt
T

( , ) ( ( ), ( )) ,=∫0 

 

with the integration occurring 
over the minimizer r t( )  of the 
integral subject to r q( ) ,0 =  
r T Q( )=  (we assume this 
minimizer is unique and 

depends smoothly on q Q, ).  For any 
(admissible) T, the momenta at times t = 0  
and t T=  are given by 

P T A q Q p A q Q
Q q

( ) ( , ), ( ) ( , ).= =−0

(3)

This can be taken as the definition of the 
momentum, or related (in a one-line calcu-
lation) to the more standard definition, as 
explained in page 261 of [1].

Returning now to the seesaw of Figure 
2, let U s S( , )  be the potential energy; then

				     
(4)

  

F U s S f U s S
S s

= = −( , ), ( , ).

A comparison between (3) and (4) shows 
that the action and the momenta ( , , )A p P  
are close analogs of the potential energy 
and the forces ( , , ).U f F  The proof of 
the symplectic char-
acter of the time T 
map ( , ) ( , )q p Q P  
for arbitrary T 
becomes a verba-
tim copy of the area 
preservation’s proof 
of the “seesaw map” 
( , ) ( , ).s f S F

A Paradox
If the spring in 

Figure 2 dissipates 
energy under defor-
mations, then (2) 
becomes

				     (5)  f ds F dS W
 ∫ ∫+ − = >( ) ,0

where W is the heat dissipated in the spring 
x; (5) suggests that the area decreased by W. 
However, the map j : ( , ) ( , )= s f S F  
depends only on the static properties of the 
spring and thus must be area-preserving; 
there is no difference between a dissipating 
and a non-dissipating spring in a static state. 
Resolution of this paradox is left as a puzzle 
for interested readers and may (or may not) 
be discussed in the next column.

All figures in this article are provided by 
the author.
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Figure 1. The left finger pushes with force f; the right finger is being 
pushed with force F.

Figure 2. The hinge at O has a spring trying to keep the board 
straight.


