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The counterintuitive phenomenon of stabilization of
the inverted pendulum by the vertical vibration
of its pivot has been known for over a century.
This remarkable effect attracted attention of many
mathematicians and physicists, including Kapitsa,
Feynman, Arnold, Moser and others. The 1989
Nobel Prize in Physics was awarded to W. Paul
for his discovery of the particle trap based on this
phenomenon. The inverted pendulum is a tip of an
‘iceberg’ of related phenomena arising in systems
with high-frequency time-dependence. This article
surveys some related phenomena discovered more
recently, some connections with differential geometry
and mechanics, and some new geometrical insights.

This article is part of the theme issue ‘Topological
and geometrical aspects of mass and vortex
dynamics’.

1. The Stephenson–Kapitsa effect

(a) A geometrical explanation of the effect
This section describes the first motivating example
of the group of phenomena described in this brief
survey: the so-called Kapitsa pendulum—the effect
was actually discovered by Stephenson [1] in 1908,
decades before Kapitsa’s paper [2] appeared. If the
pivot of the pendulum—a mass on a stick—is made
to oscillate vertically with sufficiently high frequency
then the upside-down position becomes stable. This
effect fascinated many mathematicians and physicists;
both Arnold and Moser demonstrated this effect in their
lectures. This problem was analysed in numerous papers
[3–9] and described in some famous texts, e.g. Feynman’s
[10] and Arnold’s [11]. The Stephenson–Kapitsa effect led
also to the invention of the cyclotron [12] and of the Paul
trap, for which W. Paul received Nobel Prize in physics
in 1989.
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Figure 1. A geometrical explanation of the stabilization effect for the simple pendulum.

For almost 90 years since its 1908 discovery by Stephenson, all the studies of the stabilization
phenomenon were analytical, usually based on averaging theory/normal form reduction, until a
simple geometric explanation was found [13]; we begin by describing this idea.

(i) Kapitsa’s effect and the curvature of the tractrix

Figure 1 shows an inverted pendulum (a weightless rod with a point mass at the end) whose
pivot P is vibrated in the vertical direction with a small amplitude but with high frequency which
produces a great acceleration. The point mass is subject to great force due to violent acceleration
of the pivot; this force is directed along the rod. So if, as a thought experiment, we constrain the
velocity of the point mass to the direction of the rod, we will not interfere with this large force.
On the other hand, the mass thus constrained will oscillate along an arc of a pursuit curve (the
tractrix), as illustrated in figure 1. Therefore, the mass will push against the constraint with the
centrifugal force mku2 (figure 1). And this suggests that removing the constraint (not there in the first
place) will let the particle behave as if it were subject to this centrifugal force mku2 (figure 1). This is a
heuristic explanation of stabilization by vibration. To make this explanation quantitative, let us
compute the stabilizing centrifugal force over the period of oscillation of the pivot, and then take
its average over the period of pivot’s oscillation. The force is (setting the mass m = 1)

ku2 = k(v cos θ )2, (1.1)

where k = k(θ ) is the curvature of the tractrix. Substituting k = l−1 tan θ (skipping the simple
derivation) into (1.1) yields (v2/l) sin θ cos θ for the centrifugal force of the non-existent constraint.
This suggests that the vibrated pendulum behaves as if subject to the additional force

v2

l
sin θ cos θ , (1.2)

where the bar denotes the time average. This leads to a cautious guess that the pendulum will be
upside-down stable if this stabilizing force exceeds the destabilizing component of gravity:

v2

l
sin θ cos θ > g sin θ .

In the limit of small θ this amounts to
v2

l
> g, (1.3)

a linearized stability criterion, so far unproven in this heuristic discussion. It should be added
that this criterion is asymptotic: it guarantees stability only under the above-stated assumption of
sufficiently high frequency producing sufficiently high acceleration; the term ‘sufficient’ is made
more precise in theorem 2.1 in the next section.
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Although no mention of differential equations has been made, we obtained some specific
statements about differential equations—the statements that turn out to be correct, but that take
several pages to prove rigorously. Let us summarize two of these results (linearized version of
this discussion can be found in [13]).

1. Note first that the differential equation for angle θ of the pendulum in figure 1 is

lθ̈ + (−g − a(t)) sin θ = 0, (1.4)

where a = v̇ is the pivot’s acceleration. The derivation of (1.4) is given at the end of this
section. The above heuristic discussion suggests that the effect of the pivot’s vibration can
be replaced (to the leading order) by the restoring centrifugal force (1.2); and the angle ϕ
of the mathematical pendulum subject to this force, in addition to the gravity, is governed
by Newton’s Second Law projected onto the tangent direction to the circle

d2

dt2 (lϕ)︸ ︷︷ ︸
m·acceleration

= g sinϕ︸ ︷︷ ︸
destabilizing force

−v
2

l
sinϕ cosϕ︸ ︷︷ ︸

stabilizing force

, (1.5)

to the leading order. It takes several pages to prove that this averaged equation (1.5) is
correct [13], although it only took a few lines to derive it heuristically. Theorem 2.1 in the
next section contains a precise statement, and the details of the proof can be found in [13].

2. Consider the linearization of (1.4) at the top equilibrium:

lθ̈ + (−g − a(t))θ = 0; (1.6)

we kept the same notation for θ . Assume the high frequency and small amplitude
vibration, e.g. a(t,ω) =ωβA(ωt), where A is periodic of zero average, ω is large, and
where β < 2 to assure small amplitude. As is well known, stability of (1.6) is equivalent
to Floquet matrix F satisfying the ellipticity condition

|tr F|< 2. (1.7)

It is remarkable that this algebraic condition (1.7) admits (under the asymptotic
assumptions stated at the outset) a physical interpretation of the centrifugal force
exceeding the gravitational force in the sense of (1.3). This is a symptom of a previously
hidden role of geometry in averaging theory. Some recent progress in exploring this
connection will be outlined in this brief survey.

Example. High frequency and small amplitude do not automatically guarantee stability:
stabilization must be strong enough to overcome the destabilization, in the sense of (1.3). As an
example, with l = 1, g = 1 and a =ω sinωt (high acceleration, high frequency, small amplitude) the
condition (1.3) fails, and with it does stability, no matter how large ω is: the centrifugal force of
the fictitious constraint in figure 1 is too weak to overcome gravity. Intuitively, the mean square
velocity v2 is not high enough.

Let us, therefore, increase the acceleration (and thus the velocity), keeping the same
frequency—take, for instance, a =ω3/2 sinωt. The choice of power guarantees that the amplitude
is still small, namely ω−1/2 (but not as small (ω−1) as in the preceding example of instability; this
increase is unavoidable since we kept the frequency and increased the acceleration). The stability
criterion (1.3) now becomes

ω

2l
> g, or ω> 2gl.

Our heuristic discussion relied on the asymptotic assumption of high frequency and high
acceleration, and so an earlier remark applies here: this condition alone does not guarantee
stability without the additional assumption of large ω. A numerical computation in the present
example shows that for l = 1, g = 1 stability begins not at ω0 = 2gl = 2, but rather at ω= 2.3199 . . .,
higher than the asymptotic criterion requires.
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(ii) Derivation of the vibrated pendulum equation (1.6)

Starting with the standard pendulum with constant gravity g = const., the tangential acceleration
is given by the tangential component of the gravity, referring to figure 1; by Newton’s Second
Law projected onto the tangent to the circle at θ we have

m
d2

dt2 (lθ ) = mg sin θ . (1.8)

Now we let the pivot undergo acceleration a = a(t) in the vertical direction. In the accelerating
frame of the pivot, the acceleration gives rise to the D’Alembert inertial force −ma(t) acting on the
pendulum, pointing vertically down if a> 0 and up if a< 0. The acceleration thus can equivalently
be replaced by the variable gravity, −g − a instead of the former −g. Making this replacement in
(1.8) gives

lθ̈ = (g + a) sin θ .

And the linearization at the equilibrium θ = 0 gives (1.6).

(b) Curvature of the tractrix in averaged Hill’s equations
The geometrical observation just discussed leads to the following related observation: curvature
of the tractrix shows up in averaging Hill’s equation

ẍ + q(t, ε)x = 0, 〈q〉 = 0 (1.9)

with q(t, ε) = εαA(t/ε), where α >−2 and A(τ + 1) = A(τ ) and where we take 〈A〉 = 0.
Indeed, according to the above observation and theorem 4.2 below the truncated averaged

system is

Ẍ + κ〈v2〉X = 0, (1.10)

where κ = k′(0), k(x) = curvature of the tractrix generated by unit segments (
= 1).

(c) Asymptotics of path integrals and curvature
As yet another consequence of the discussion in §1a, the curvature of the tractrix is seen to arise in
a problem of composition of non-commuting matrices from SL(2, R). Indeed, Hill’s equation (1.9)
can be written in the Hamiltonian form

ẋ = A(t, ε)x, x ∈ R
2, A =

(
0 1

−q 0

)
.

Now the fundamental solution matrix F(t) is given by P exp
∫t

0 A(τ , ε)dτ , where the path integral
P exp is defined as the limit of a product of a family of non-commuting 2 × 2 matrices of the form
I + A dτ , namely

F(t) = lim
n→∞

(
I + A(tn)�t

)(
I + A(tn−1)�t

)
. . .
(
I + A(t1)�t

)
,

where �t = t/n and tk = (k/n)t. According to the preceding section, the leading term in the
asymptotic expression for this product is

F = exp

(
0 1

−κ〈v2〉 0

)
+ . . . ,

and the term −κ〈v2〉 has a physical interpretation in terms of centrifugal acceleration of the motion
along a tractrix.
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2. Averaging of oscillatory systems: analytical approach
In this section, we state an averaging theorem in the algebraic form and then illustrate its
geometrical side on several examples. Further details and proofs can be found in [13].

(a) The result
The linearized pendulum equation (1.6), or its nonlinear counterpart lẍ + (−g − a(t)) sin x = 0 are
special cases of the system

ẍ = a(t, ε)f(x); (2.1)

here f : R
n → R

n. We take a to be ‘large and fast’:

a(t, ε) = εαA
(

t
ε

)
, with α >−2, (2.2)

where A(τ + 1) = A(τ ) = O(1) and ε� 1. We note that under this assumption the acceleration is
allowed to be very large, but the ‘displacement’ s(t, ε) is small:

s(t, ε) =
∫ t

t0

∫ τ
τ0

(a(s) − 〈a〉) dsdτ ∼ ε2+α � 1; (2.3)

here t0, τ0 are chosen so that the integral is a periodic function with zero average.
We are thus dealing with high-frequency violent vibrations. Unless stated otherwise, we

always assume that f is real analytic, although C(5) actually suffices for the next result.

Theorem 2.1 ([13]). Under the scaling assumption (2.2) the system (2.1) reduces to the averaged
equation

Ẍ = 〈a〉f(X) − 〈v2〉f′(X)f(X) + E, (2.4)

where1

v =
∫ t

t0

(a − 〈a〉) dt, 〈v〉 = 0 (2.5)

and where |E| ≤ Mε3+5α/2 with M> 0 depending on f and A but not on ε, via the transformation
x = X + s(t, ε)f(X) + O(ε), where s was defined in (2.3)

We note that f′f has the interpretation of the acceleration of the particle carried by the velocity
field f, the so-called convective acceleration. In the solid mechanics literature the notation (f · ∇)f
is used.

The formal derivation of the averaged equation (2.4) can be found in [2,14], or obtained by
reducing (2.1) to a first-order system and using the standard method of normal form, e.g. [15].
A detailed proof of theorem 2.1 with estimates can be found in [13].

(b) Application 1: unit vectorfields inR
n

In this case, the geometry becomes particularly transparent: if |f(x)| ≡ 1, then equation (2.4) is
equivalent to

Ẍ = 〈a〉 f(X) − k 〈v2〉 n + E, (2.6)

where n(x) is the principal unit normal vector to the integral curve of f at x and where k(x) is the
curvature of this curve. E satisfies the same estimate as above.

Observe that −kv2n is precisely the centrifugal force acting on a bead of unit mass sliding along
a curve of curvature k with speed v.

Proof of (2.6) follows at once from (2.4) by application of the following observation.

1f′(x) denotes the Jacobian n × n matrix of partial derivatives.
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Lemma 2.2 ([13]). In a vector field of unit vectors: |f(x)| = 1, ∀x, the curvature k = k(x) and the
principal unit normal n = n(x) to the integral line through x are given by

k n = f′f ≡ (f · ∇)f. (2.7)

Proof of the lemma. Let x = x(s) be an integral curve: (dx(s))/(ds) = f(x(s)) since |f| ≡ 1, s is the arc
length parameter. Thus

kn def= d2x
ds2 = d

ds
f(x(s)) = f′(x)f(x),

as claimed. �

In the special case x ∈ R
2 equation (2.6) becomes

Ẍ = 〈a〉f(X) − 〈v2〉 curl f · n + E, (2.8)

where curl denotes the two-dimensional (scalar) curl. This result follows from the following
simple observation.

Lemma 2.3 ([13]). The curvature k(x) of trajectories of a unit vectorfield f(x) ≡ 1 in R
2 coincides with

the (scalar) curl:
curl f(x) = k(x), (2.9)

where the sign of k is decided by the definition of the curvature: k = (dθ)/(ds), with the direction of
increasing s given by f.

Proof of Lemma 2.3. By the definition, the curl in 2D is the sum of the angular velocities of two
infinitesimal segments A and B orthogonal to each other at x as these segments are carried with
the flow: curl f =ω(A) + ω(B). Take one of these segments A to be tangent to the trajectory at x, so
that B ⊥ A at x at the initial instant, and let both A and B be carried along with the flow. Note that
ω(A) = k by the definition of the curvature: indeed, A remains tangent to the orbit for all t as it
is carried with the flow with the speed |f| = 1. On the other hand, we have ω(B) = 0 at t = 0 since
f ⊥ B and since |f| = const. We conclude: ω(A) + ω(B) = k + 0 = k. �

(c) Application 2: potential fields
If the force field is conservative (such as in the Paul trap, for instance): f = −∇V(x) in
equation (2.1),2 so that the latter becomes

ẍ = −a∇V, (2.10)

then the averaged equations (2.4) become, assuming for simplicity 〈a〉 = 0:

Ẍ = −〈v2〉∇W + E, where W = 1
2 f2 = 1

2 (∇V)2. (2.11)

Indeed, f′f = (1/2)(f2)′ ≡ ∇W.

Remark 2.4. Every isolated critical point of V is a minimum of W. Therefore, every isolated
equilibrium of the original potential system is stabilized in the sense that every such equilibrium
point is a minimum of the time-independent potential W. Note that E is small compared to
the leading term in (2.11): |E| ≈ ε1+(α/2)〈v2〉 � 〈v2〉. The net effect is the attraction towards the
equilibrium. The cumulative effect of E is discussed in §2f.

(d) Application 3: the double pendulum
Following [13], consider the double pendulum (a pendulum to whose bob another pendulum is
attached), with the suspension point undergoing periodic vertical oscillations. We only consider

2We use the notations V′(x) ≡ ∇V(x) interchangeably.
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Figure 2. Morse indices of the equilibria of the averaged double pendulum.

motions confined to a vertical plane. The equations of motion are in the form slightly more general
than (2.1): they come from the Lagrangian

L(x, ẋ, t) = 1
2
〈A(x)ẋ, ẋ〉 − a

(
t
ε

)
V(x), (2.12)

where A is a positive definite symmetric matrix, where x = (θ1, θ2) with θi being the deflection
angles from the vertical, and where 〈·, ·〉 denotes the standard dot product in R

2. Here, a = −g
minus the acceleration of the suspension point; assuming the latter to be large, we treat g as a
small perturbation, omitting it altogether. This omission has no effect on the qualitative picture.
We thus consider (2.12) with 〈a〉 = 0. The averaged equations have the Lagrangian (modulo
higher-order terms)

L(X, Ẋ, t) = 1
2 〈A(X)Ẋ, Ẋ〉 − 〈v2〉W(X), (2.13)

where W = (1/2)〈A−1V′, V′〉. The potential W is a function on the torus T
2, and we wish to count

critical points of W which correspond to the equilibria of the truncated averaged system. Since
V has four critical points x = (θ1, θ2) = (πk1,πk2), where ki ∈ {0, 1}, W has four minima. A function
on the torus with four minima must have other critical points, so that we know without any
computation that there must be additional equilibrium positions for the averaged equations.

We now determine the least number of these equilibria by a topological argument. Let m0, m1
and m2 be the respective numbers of minima, saddles and maxima of W. The Euler characteristic
of the torus is 0 = m0 − m1 + m2. Since m0 = the number of critical points of V, we have m0 ≥ 4
(we assume the generic case of non-degenerate critical points). Since W must have at least one
maximum, we have m2 ≥ 1. From this, we conclude that the number of saddles m1 = m0 + m2 ≥
4 + 1 = 5, and thus the number of equilibria of W is at least 10. For the case of a double pendulum,
we can invoke additional symmetry considerations to conclude that m0 + m1 + m2 ≥ 12; these
equilibria are sketched in figure 2. For a more detailed discussion of multiple pendula, we refer
to [4,9] and references therein.

(e) Application 4: a single pendulum
For the single pendulum, the above topological argument predicts two additional equilibria,
figure 3; these are unstable. This is confirmed by the application of theorem 2.1. Indeed, the angle
x with the upward vertical direction evolves according to

lẍ = (g + a(t)) sin x, 〈a〉 = 0.

Assume a(t) to be like in (2.2); then theorem 2.1 gives the averaged truncated equation

lẍ = g sin x − 〈v2〉
l

sin x cos x, (2.14)



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20190014

................................................................

s

s

u u

p0 2p

(V ¢)2

Figure 3. Four equilibria of the averaged single pendulum.

where the error terms have been removed. The effective potential g cos x − (1/2l)v2 sin2 x has
four critical points, assuming gl< 〈v2〉 (figure 3). For more details on the dynamics near these
equilibria, we refer to [16].

(f) Error bounds
Let X and X̄ be the solutions of (2.11) and of the truncated equation respectively, sharing the same
initial condition. The error X − X̄ remains small for time O(ε−(α/2)), as follows from results in [17]
applied to (2.4). For α < 0 (‘violent’ vibration) this time is short and such estimates are of little
use. Nevertheless, one can still obtain physically useful estimates on the energy for longer time
intervals. Take, to be specific, the ‘worst’ case of α = −1 so that

E = O(
√
ε) ≡ √

εG
(

x, ẋ,
t
ε

, ε
)

, (2.15)

where G is bounded when its arguments are.

Theorem 2.5 ([13]). Fix initial conditions x0, ẋ0, and let x be the solution of (2.11). Consider the case3

of α= −1. There exist positive constants ε0 and K independent of ε such that the ‘energy’

H= 1
2 (ẋ − v(t)f(x))2 + W(x).

satisfies

|H(t) − H(0)| ≤ √
εKt + Kε, for |t|< 1

K
√
ε

. (2.16)

This estimate shows that the particle spends a long time in the well of the effective potential W.
The above discussion leaves open the question of stability of (2.11) for all time. In fact, for n> 1

such stability is virtually certain to fail due to Arnold diffusion. For the case of n = 1 the proof of
stability for all time depends on the verification of the assumptions of the Kolmogorov–Arnold–
Moser theory. There is a considerable literature by now dealing with such questions, see [18] and
references therein. Using the methods developed there one can prove stability under some mild
additional assumptions on V.

3. Geometrical averaging
In this section, we develop more systematically the heuristic geometrical explanation of the
Stephenson–Kapitsa effect. We put this effect in a more general setting and state the rigorous
results. More specifically, we point out that the ponderomotive force −〈v2〉f ′f in (2.4) in the case
of n = 1 d.f. is precisely the averaged centrifugal force of a certain constraint.

The idea is to interpret
ẍ = −a(t, ε)V′(x), x ∈ R (3.1)

as describing the motion of a particle constrained to an oscillating curve in the plane—the simplest
possible case, but still non-trivial, of geodesic motion on a vibrating manifold.

3For simplicity, the general case goes verbatim.
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We begin by defining the curve W in R
2 as the image of the graph y = V(x) of the potential

under the map

x �→
∫ x

0

√
1 − V′(σ )2 dσ , y �→ y (3.2)

of the xy-plane (for this to make sense we restrict attention to the set {x : |V′(x)| ≤ 1} throughout
this section.)

For instance, for V = x2 the corresponding curve W is a cycloid; and for V = cos x the
corresponding curve W is a circle.

Let us now subject W to oscillations in the y-direction with acceleration a(t, ε), i.e. let Wt be the
y-translate of W by s(t, ε), where s is defined in (2.3). Finally, let W⊥ denote the family of curves
normal to the family {Wt}.

Theorem 3.1 ([19]). Consider a unit point mass constrained to some fixed curve W⊥ from W⊥,
and in addition to the moving curve Wt. The centrifugal force of the constraint to W⊥ is precisely the
ponderomotive force in the averaged equation (2.11). This force is given by

〈v2〉f ′(x)f (x) = 〈v2〉 k⊥(x) sin2 θ , (3.3)

where

— v = ∫
adτ (the velocity of Wt in the y–direction), 〈v〉 = 0

— k⊥ = k⊥(x, t) is the curvature of the curve W⊥ at the distance x measured along Wt from the y-axis
— θ = θ (x) is the angle shown in figure 4.

We did not include gravity in the above theorem, since we wish to isolate the essential
phenomenon in its simplest form and since inclusion of gravity does not give rise to any new
effects.

The averaged equation (2.11), or rather its special form in the linear case, appears in Landau–
Lifshitz [14]; theorem 3.1 uncovers the hidden geometry behind this result. The advantage of the
geometrical reasoning, in this case, is that it allows one to guess the correct form of the averaged
equations without difficulty; it is unclear how this result can be obtained otherwise without a
page–long derivation (also non-rigorous) as in Landau–Lifshitz [14]. The rigorous proof is much
longer and involves somewhat tedious and unrevealing algebra.

4. Non-holonomic shadows in averaging
In this section, we show that the connection between averaging and geometry goes deeper than
has been described above.
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Figure 5. (a) A twirled pendulum and (b) derivation of equation (4.1).

(a) Introduction
The connection between geometry turns out to be more intimate than what has been described in
the preceding sections. We illustrate this closer connection on the simplest non-trivial example,
figure 5: a pendulum whose pivot z(t) moves periodically in a closed path. We take the path to
be small and the frequency to be high: z(t, ε) = εZ(ε−1t) (here Z(τ ) is a closed curve in R

2) with
ε� 1. We also ignore gravity since including it will simply add predictable terms to the equations
without introducing any new phenomena.

Assuming also the presence of viscous drag in the hinge and taking the length of the pendulum
to be 1, the angle θ in figure 5 satisfies

θ̈ + cθ̇ = a(t, ε) sin(θ − α(t, ε)), (4.1)

where c> 0 is the drag coefficient, a = |z̈| and α is the angle shown in figure 5 (right). Derivation
of (4.1) is similar to the derivation of (1.8), and we give it here. We pass to the reference frame
of the pivot; in this frame the mass (which we take m = 1) is subject to the D’Alembert inertial
force −z̈; and the component of this force tangential to the unit circle is |z̈| sin(θ − α), as figure 5
illustrates, confirming (4.1).

Equation (4.1) can be written more directly in terms of the pivot’s acceleration z̈:

θ̈ + cθ̇ = z̈ · F(θ ), where F = 〈sin θ , − cos θ〉. (4.2)

Parenthetically, this equation also governs the particle in a sinusoidal potential with time-
dependent amplitude a, with a shifting phase α, and in the presence of drag.

(b) Notations
To uncover the hidden geometry of the problem we need to define three quantities A,B and C;
their geometrical meaning is explained after the definition. We let f = f (t, θ ) and g = g(t, θ ) be two
given functions periodic in both variables, of periods 1 and 2π in t and θ respectively, and define

Af =Af (θ ) =
∫ 1

0
f ′ ḟ dt, where f ′ = ∂f

∂θ
, ḟ = ∂f

∂t
, (4.3)

Bf ,g(θ , t0) =
∫ 1

0

(
1
2

f 2g′′ − (
f ′(t, θ ) − f ′(t0, θ )

)
fg′
)

dt (4.4)

and Cf (θ , τ ) = ḟ ḟ ′. (4.5)

(i) Geometrical interpretations ofA,B and C
From now on we will take f (t, θ ) = Z · F(θ ), where F is given in (4.2). Then A, B and C are associated
with the closed curve Z, and have the following geometrical interpretation.
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P b
j

(j, t)

Figure 6. The non-holonomic skate, or bike. The velocity ofM is constrained to the line PM. Here,C is the centrifugal force with
which a unit point mass acts on the constraint as P.

F
R

Figure 7. The Prytz planimeter.

1. Af is the area enclosed by the path of Z(t). Indeed, f ′ ≡ Z · F′ = X and f ≡ Z · F = Y are4

precisely the coordinates of Z in the (right-handed) orthonormal frame (F′, F). Thus Af =∫1
0 f ′ ḟ dt = ∮

X dY = area inside Z, as claimed.
2. Let us take g = ḟ . Then Bf ,ḟ (θ , t0) = xAf , where x is the distance from the centroid of the

domain D enclosed by the path of Z to the line through Z(t0) in the direction −F(t0). In
other words, Bf ,ḟ (θ , t0) is the torque around the axis through Z(t0) in the direction −F(t0)
of the uniformly distributed force applied to the lamina D, perpendicular to the lamina.
Indeed, f ′′ = −f and (4.4) with g = ḟ yields

Bf ,ḟ =
∫ 1

0

(
−1

2
f 2 ḟ − ( f ′ − f ′

0)f ḟ ′
)

dt = −
∮

(X − X0)Y dX = −
∫∫

D
(X − X0) dX dY = xAf ,

(4.6)
as claimed.

3. To endow Cf (θ , τ ) with a physical meaning, we impose an artificial constraint on the
pendulum’s bob by restricting its velocity the direction of the rod; in other words, we
are replacing the pendulum with a non-holonomically constrained ’skate’ PM, where
M’s velocity is constrained to the line PM, figure 6. With such constrained imposed,
Cf (θ , τ ) is the centrifugal acceleration of M; in particular Cf (θ , τ ) = kv2, where k = k(θ , τ ) is
the curvature of the (constrained) M’s path, while v = v(θ , τ ) is M’s speed. Indeed, recall
that the centrifugal acceleration of a moving point is the product of the rate of rotation of
its velocity vector and of its speed. But Cf (θ , t) = ḟ ḟ ′ = (Ż(t) · F(θ))(Ż(t) · F′(θ)) is precisely
such a product.

(c) A non-holonomic system
In this section, we point out that the quantities A, B and C appear in a non-holonomically
constrained system: the ‘skate’, also known as the Prytz planimeter, depicted in figure 7. We first
describe the device and then show how it gives rise to A, B and C.

4Here ′ = (d/dθ ) and˙= (d/dt).
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The Prytz planimeter is a mechanical device invented by Holger Prytz about 1875 to measure
areas, as mentioned in [20], see also references therein, e.g. [21,22]. The hatchet-shaped end R
helps prevent sideslip; the same effect can be achieved by attaching a wheel oriented along RF at
R, like the rear wheel of a scooter. Formally speaking, the planimeter is a rigid segment RF whose
end F (front) travels along a prescribed path, while the velocity of its ‘rear’ end R is constrained to
line up with the segment. If F executes a closed path, returning to its initial position, R ends up in
the new position, i.e. RF ends up rotated through a certain angle. For small paths, in the leading
order, this angle is proportional to the area of the enclosed by the path, and is independent of the
initial orientation. We now make it more precise.

(i) Planimeter’s equations of motion

Let θ be the angle formed by the segment RF with the positive x-axis, and let z(t) = z(t + 1) be
a parameterization of the closed path K traced out by the tracer F. The no-slip constraint of the
velocity of the slider R amounts to

θ̇ = ż · F(θ ), (4.7)

where F is the same as in (4.2). To state the asymptotic result, we consider a rescaling of Z:

z(t) = εZ(t),

so that equation (4.7) takes form

θ̇ = εŻ(t) · F(θ ), (4.8)

The following theorem is a restatement of the theorem due to Prytz, see also Foote [20].

Theorem 4.1 ([23]). Let θ = θ (t) be a solution of (4.8). One has

θ (t0 + 1) − θ (t0) = ε2Af + ε3Bf ,ḟ (θ , t0) + O(ε4), (4.9)

where f (t, θ ) = Ż(t) · F(θ ) and where A, B and C are defined in (4.3)–(4.5).

Note that the first term on the right is independent of the initial orientation θ0.

(d) The averaging theorem for the twirled pendulum
The next theorem shows that the shadow of the non-holonomic constraint of the ‘bike’ arises in
the averaged form of the rapidly twirled pendulum. The twirled pendulum’s motion is governed
by (4.2) where we assume

z(t, ε) = εZ
(

t
ε

)
,

and where Z is a smooth (C5) periodic function of period 1.

Theorem 4.2 ([23]). There exists a change of variables θ = ϕ + εg(ϕ, t, ε) with g(ϕ + 2π , t, ε) =
g(ϕ, t + ε, ε) = g(ϕ, t, ε), such that equations (4.1)–(4.2) is transformed into

ϕ̈ + cϕ̇ = Cf (ϕ) + ε

(
cAf (ϕ) + Bf ,f̈ (ϕ)

)
+ ε2R(ϕ, t, ε), (4.10)

where C, A and B are defined in (4.5), (4.3) and (4.4), where f (t, θ ) = Z · F and where the bar denotes the
time average.

We conclude that the three quantities associated with the non-holonomic Prytz planimeter
appear also in the twirled pendulum (the term C appearing in (4.10) is also the force of non-
holonomic constraint on the slider R if it were endowed with a unit mass, figure 6). In other
words, we find that a non-holonomic system hides in the shadow of the holonomic one in the
case of rapid forcing as specified here.
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Remarks.

1. The forcing term in (4.2) is O(ε−1), the ‘ponderomotive’ term C is O(1), and the next two
terms are O(ε).

2. The area term in (4.10) arises only if the drag coefficient c �= 0.

(e) Applications of the twirled pendulum.
(i) Feynman’s ratchet

As the simplest interesting example, we consider the particle in R subject to the sliding potential
V(θ , t) = −(A/ε) cos(θ − t/ε); the motion is governed by the equation of ‘twirled pendulum’
without gravity:

θ̈ + cθ̇ = Aε−1 sin
(
θ − t

ε

)
, (4.11)

a special case of (4.1) with a(t, ε) = A/ε, α(t, ε) = t/ε, with ε=ω−1. We assume ω� 1, i.e. the
rapidly sliding potential with large amplitude. According to theorem 4.2, the averaged equation
for the particle in the Feynman ratchet is given by

ϕ̈ + cϕ̇ = εcπA2 + o(ε).

A particle in such a potential will, to the leading order in ε, undergo drift with speed

vdrift = επA2,

independent of the drag coefficient c, provided c> 0 – indeed, when matching the drag cϕ̇ to the
forcing εcπA2 the drag coefficient cancels out. Interestingly, although the drag is responsible for
the presence of drift, the speed of the drift is independent of the drag coefficient. The explanation
of this seeming discontinuity lies in the fact that as c → 0, the time it takes to approach vdrift
approaches infinity.

(ii) A bead on a rigid hoop

As another application of theorem 4.2 we consider a point mass constrained to a rigid hoop in R
2.

The particle is subject to drag proportional to the speed of sliding along the hoop. No additional
forces, apart from the constraint and the drag, act on the bead.

Adiabatic motion of this system in the conservative (i.e. the drag-free) case has been studied
by Berry & Hannay [24], who showed that as the hoop undergoes one slow revolution around
a fixed point, the bead running with speed O(1) around the hoop ends up shifted, compared to
its twin on a stationary hoop, by the arclength A/2πL where A and L are respectively the area
and the length of the hoop. In this section, we demonstrate a different holonomy effect in the
‘opposite’ asymptotic case, that of a rapidly vibrating hoop, and in the presence of friction. Again,
as in the previous case, we will see an associated non-holonomic system as the singular limit of
the original holonomic system.

Equations of motion. Consider a smooth closed curve (the hoop) r : R �→ R
2 parameterized by the

arclength s, and let this undergo oscillatory translational motion: r(s, t) = −z(t) + r(s); the negative
sign is used for later convenience. The hoop thus oscillates in a closed path, undergoing parallel
translations by −z. We assume small-amplitude, high-frequency motions: z(t, ε) = εZ(t/ε). The
equation of motion of the bead constrained to the hoop is

s̈ + cṡ = a · T(s), (4.12)

where a(t) = z̈ and T = r′(s) is the unit tangent vector.

Remark 4.3. The twirled pendulum is a special case in which the hoop is a circle.
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With z = εZ(t/ε), theorem 4.2 applies: there exists a transformation s = σ + εg(σ , t, ε) turning
equation (4.12) into (4.10). The truncated averaged equations take form

σ̈ + cσ = κ⊥u2 + ε

(
κA + Bf ,f̈

)
, (4.13)

where

— κ⊥ = κ⊥(σ , t) is the curvature of the curve normal to the family of translates r(σ ) − z(t).
— u = ż ∧ r′ is the normal velocity of the hoop;
— A is the area enclosed by the curve z(t);
— κ(σ ) = |r′′(σ )| is the curvature of the hoop as the function of the arclength.

5. Geodesics on vibrating surfaces
So far, we have discussed the motion of a particle in R

n, as well as of particles constrained to
moving curves. In this section, we describe a generalization to vibrating constraints to higher
dimension, considering the simplest case of 2 d.f. Specifically, we consider the motion of a particle
confined to a moving surface in R

3 given by

ϕ(x, y, z) − s(t, ε) = 0, (5.1)

where s = εs1(t/ε), s1(τ + 1) = s1(τ ) is a periodic function and ε > 0. We assume that no forces,
apart for the surface constraints, act on the particle. In other words, we study the classical
problem of geodesic motion on surfaces, but with an added twist: the surface vibrates or deforms
rapidly. We would like to understand the averaged effect of this vibration. As before, we consider
the small-amplitude high-frequency case. We start with a heuristic derivation of the averaged
equations of motion, and follow it by the rigorous statement.

(a) Averaged equations of motion
Consider the family of surfaces S in R

3 (5.1) parametrized by t. Assuming that the gradient ∇ϕ =
ϕ′ �= 0, the family F⊥ of curves normal to the family S is well defined. Let k = k(R) be the curvature
of a curve from F⊥ passing through a point R ∈ R

3, and let N = N(R) be the principal normal
vector to this curve. Finally, let v be the normal speed of the moving surface (5.1), i.e. let v = ṡ/|ϕ′|.

According to the following theorem, the vibration of the surface gives rise to the
ponderomotive force tangential to the surface, and equal to the centrifugal force of a non-existent
constraint: the constraint to a curve from the family F⊥.

Theorem 5.1 ([25]). There exists a time-dependent transformation r �→ R

r = R + h(R, t, ε) (5.2)

which decomposes the motion r into the average motion R and the fluctuation h = O(ε), such that R satisfies

R̈ = −(ϕ′′Ṙ, Ṙ)Φ − k〈v2〉N + E, (5.3)

where E = o(1) and where Φ is the rescaled gradient

Φ = ϕ′

|ϕ′|2 and ϕ′ ≡ ∇ϕ. (5.4)

Remark 5.2. The truncated averaged equation

R̈ = −(ϕ′′Ṙ, Ṙ)Φ − k〈v2〉N (5.5)

leaves the tangent bundle of any surface S := {ϕ = const.} invariant: for any solution R(t) of
equation (5.5), if R(t) ∈ S and Ṙ(t) ∈ TR(t)S for some t, then the same is true for all t.
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Figure8. Thevibrationof a surfacepatch creates aneffectivepotential force attracting towards thepoint ofmaximal amplitude.
(Online version in colour.)

Remark 5.3. The first term on the right in (5.3) is the centripetal force of constraint to a stationary
surface ϕ = const.

(i) A heuristic derivation of equation (5.3)

Since s(t) = εs1(t/ε) is rapidly oscillating, we expect the particle to move primarily in the normal
direction to the surface, i.e. along one of the curves from the normal family. If the particle were
actually constrained a normal curve, the centripetal force of constraint would arise, namely kv2N,
with the average k〈v2〉N over the period ε. Now let us remove our non-existent constraint, and
thus the centripetal force; the released particle then should behave as if the opposite force −k〈v2〉N
were acting on it. This explains the last term in (5.5).

There is an striking contrast between the brevity of the above heuristic argument and the much
greater length of a rigorous proof of (5.3) (found in [25]). The heuristic argument also reveals a
geometric aspect of the averaged equations obtained by a formal argument. This geometric form
looks quite different from (5.3), and it is not clear how the geometric significance of these averaged
equations could be discovered by other means. In fact, the geometrical form (5.3) of the averaged
equations was arrived at before the rigorous proof of it was given in [25]. It would be of interest
to convert the heuristic argument into a rigorous proof, thereby replacing the normal form-based
argument in which the underlying geometry remains hidden.

(ii) An illustration

Consider the time-dependent surface with a ‘vibrating bump’, as shown in figure 8. According to
the above, the effect of this vibration is to create a potential well, i.e. an effective force attracting
to a potential minimum inside the vibrating patch.

6. Ponderomotive magnetism
Most problems addressed so far were special cases of the Newtonian system

ẍ = −∇V(x, t).

It turns out that if, unlike in prior sections, ∇V exhibits some rotation in time (for fixed x and as a
function of t), then a new effect arises. This section summarizes some results from [26].

(a) Some background
It is a fundamental fact of nature that a changing electric field creates a magnetic field.
Interestingly, a superficially analogous effect arises in mechanics: in a rapidly changing force field
a particle acts as if it were subject to Lorentz force. This happens, for example, when a point
mass is placed in the rapidly rotating saddle potential [27]. The ponderomotive Lorentz force, a term
introduced in [26], seems to be a fitting name for this magnetic-like force, since it is given by
the same mathematical expression as the Lorentz force (where the ‘magnetic field’ is given in
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Figure 9. A rotating saddle potential. (Online version in colour.)

Figure 10. The motion of a particle in a potential which includes both vibrating and rotating terms. (Online version in colour.)

terms of the potential). This force does not appear in the problems with separated time and space
dependence discussed in §2—but for more general time-dependence it occurs ‘generically’.5

A long list of examples from physics which fall in the class studied in this section can be found
in [27,28]. Historically, perhaps the first such example was analysed by Brouwer [29] (of the Bohl–
Brouwer fixed point theorem). Brouwer actually considered a particle sliding on a rotating saddle
surface in the presence of gravity, as in figure 9. The linearized equations near the equilibrium,
however, are the same as those describing a particle in a rotating saddle potential.

There seems to be no mention of this magnetic-like force in the literature apart from [26,30–32].
Figure 10 illustrates a typical motion in the presence of some rotation in the potential. In addition
to the ‘wiggling’ motion the particles undergo a certain precession-like motion. The latter turns
out to be a manifestation of the hidden ‘ponderomotive magnetism’ which is described in
theorems 6.1 and 6.2 below (and in more detail in [26]).

5The precise meaning of this is clear from theorem 6.2.
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(b) The main result
Following [26], we consider the motion of a particle in a rapidly oscillating potential,

ẍ = −∇U
(

x,
t
ε

)
, x ∈ R

n, (6.1)

where the gradient is taken with respect to x, the function U is periodic in the second variable:

U(x, τ ) = U(x, τ + 1),

and where ε is a small parameter. Examples of this include the separable case U(x, t) = a(t)V(x),
the rotating saddle, and much more.

For future reference, we note that (6.1) is equivalent to the Hamiltonian system with the
Hamiltonian

H(x, p, t/ε) = 1
2

p2 + U
(

x,
t
ε

)
. (6.2)

The main theorem, to be stated shortly, refers to the three temporal antiderivatives of U
(‘velocity’, ‘position’ and ‘absement’ potentials):

V(x, τ ) =
∫

[U(x, τ ) − U(x)] dτ , S(x, τ ) =
∫

V(x, τ ) dτ , A(x, τ ) =
∫

S(x, τ ) dτ , (6.3)

where U = U(x) denotes the time average of U over one temporal period, and where each of the
indefinite integrals is chosen to have zero time average:

V = S = A = 0.

For the sake of brevity, the x-derivative of a function f : R
n → R will be denoted by a prime (′)

rather than by ∇. Similarly, the Hessian will be denoted by two primes, so that

U′ = ∇U, U′′ = ∇2U, etc.

The following two theorems show, in particular, the appearance of the ponderomotive Lorentz
force.

Theorem 6.1 ([26]). Assume that the potential U in (6.1) is of class C3 in x and continuous in t. For
any fixed ball in the phase space R

2n there exists ε0 > 0 such that for each positive ε < ε0 there is a
time-parameterized family of symplectic transformations

ψτ =ψτε : (x, p) �→ (X, P)

defined on the ball and periodic of period one in τ , such that the time-dependent transformation ψ t/ε turns
the system with the Hamiltonian (6.2) into the system with the Hamiltonian

K(X, P, t/ε) = 1
2

P2 + U + ε2

2
V′ · V′ − ε3(S′′V′ · P

)+ O(ε4), (6.4)

which is time-independent to third order.

For the Newtonian formulation (6.1), we have the following, recalling the notation from (6.3).

Theorem 6.2 ([26]). Any solution x = x(t) of (6.1) has the associated guiding centre

X = x + ε2S′
(

x,
t
ε

)
− 2ε3A′′

(
x,

t
ε

)
ẋ + O(ε4) (6.5)

which behaves as a charged particle subject to potential and magnetic forces:

Ẍ = −U ′(X) − ε2W′(X) + ε3B(X)Ẋ + O(ε4), (6.6)

where W = (1/2)V′ · V′ and B is the skew-symmetric matrix given by B = (b′)T − b′, with b = S′′V′.

We do not specify the O(ε4) term in (6.5) for the sake of simplicity; it can easily be obtained
from the proof if desired.
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Remark 6.3. The term B(X)Ẋ in (6.6) can be interpreted as the force produced by a magnetic
field. In dimension n = 2, the strength of this field (normal to the plane) is 2 curl b, where curl
denotes the scalar curl in R

2.

Remark 6.4. Although the original system (6.1) is fully nonlinear, its averaged counterpart (6.6)
is, to leading order, linear in the velocity.

(c) Applications
The examples of this section give particularly simple illustrations of theorem 6.2. These are:

1. the rotating saddle potential;
2. the purely oscillatory potential;
3. a potential whose graph is a rotating ruled surface.

(i) The rotating saddle

In this special case of physical interest, as described in [28], the potential U is quadratic and
rapidly rotating, i.e. of the form

U = U0

(
R−1

(
t
ε

)
x
)

,

where U0(x) = (x2
1 − x2

2)/2, x = (x1, x2) ∈ R
2, and

R(τ ) =
(

cos τ − sin τ
sin τ cos τ

)

is the counterclockwise rotation. In this case, the transformation (6.5) takes the form

X = x − ε2Q
(

t
ε

)
(x − 2εJẋ) + O(ε5)

with ε= (2ω)−1 (note the absence of the ε4-term) and with

Q(τ ) =
(

cos τ sin τ
sin τ − cos τ

)
and J =

(
0 −1
1 0

)
,

and the averaged equation becomes

Ẍ = −ε2X − 2ε3JẊ + O(ε4),

in agreement with the result in [30] (it should be noted that the ε in that paper is twice the
present ε).

(ii) The purely oscillatory potential

Another special case of physical importance is

ẍ = −a
(

t
ε

)
U′(x), (6.7)

where a is real-valued and periodic. This equation describes, among other things, the motion
of charged particles in the Paul trap [33], in which an electric field is generated by oscillating
voltages on electrodes. The inverted pendulum with oscillating suspension is another example.
The averaged equation (6.6) becomes (omitting some algebra)

Ẍ = −a U′(X) − ε2 v2 U′′(X)U′(X) + O(ε4),

where v(τ ) = ∫
a(τ ) dτ with v = 0. Note that the cubic terms corresponding to the ‘magnetic’ effect

vanish in this case. This is a refinement of the result of theorem 2.1, where the cubic terms were
not addressed.
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(iii) A rotating ruled surface and a magnetic dipole

Consider the potential U whose graph is a rotating ruled surface:

U(x, τ ) = h(θ − τ ),

where θ is the polar angle of x, and h is a smooth 2π -periodic function. Such a potential has
a singularity at the origin, and so we apply our averaging theorem to the complement of a
neighbourhood of the origin. Theorem 6.2 in this case yields averaged equations, after some
manipulations (see [26]):

Ẍ = ε3 h
1

|X|3 JẊ + O(ε4), where h = 1
2π

∫π
0

h(θ ) dθ .

The ‘magnetic field’ strength ε3 h/|X|3 falls off as the inverse cube of the distance to the origin-
precisely as if a magnetic dipole with the axis normal to the plane were present at the origin!

Open problem. To conclude we point out that no geometrical explanation of ponderomotive
magnetism is available at present, and that it would be of great interest to find such an
explanation. It perhaps should be mentioned that a geometrical explanation of ‘magnetism’ is
available in a different problem with analogous flavour: the motion of a spinning disc constrained
to be tangent to a surface [34]. In that problem, the tangency point of the disc with the surface
behaves as if it were a charged particle sliding on the surface and subject to the Lorentz force in
the magnetic field normal to the surface of strength equal to Gaussian curvature of the surface,
and with the particle’s charge equal to the disc’s angular momentum around its axis. Further
details can be found in the last-mentioned reference.
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