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a b s t r a c t

The existence of traveling wave solutions for the discrete, forced, damped sine-Gordon equation, which
serves as a model of arrays of Josephson junctions and coupled pendula, in the case of small coupling
coefficient has been addressed before. In this paper we prove the existence of a discrete traveling wave
in a lattice of coupled pendula with a large coupling coefficient in the presence of damping and forcing,
and show the global stability of this wave.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction and a heuristic discussion

The forced damped sine-Gordon equation

ϕtt + cϕt − ϕss + sinϕ = I, (1.1)

where c and I are constants, arises in many physical applications
such as nonlinear resonant optics [1,2] and Josephson junctions [3].
Space discretization of this equation, obtained by replacing ϕss by
the second difference

ẍi + cẋi + sin xi = k(xi+1 − 2xi + xi−1) + I, i ∈ Z (1.2)

is of special interest from a physical point of view: it serves as a
model of infinite arrays of coupled pendula [4], arrays of Josephson
junctions [5], or as a dynamical Frenkel–Kontorova model of
electrons in a crystal lattice [6]. Eq. (1.2) describes themotion of an
array of pendula each of which is coupled to its nearest neighbors
by a torsional spring with a coupling coefficient k. In addition, each
pendulum is subject to a constant torque I and to a viscous drag
with a drag coefficient c . The angles xi formed by the ith pendulum
with the vertical axis evolve according to (1.2), assuming physical
units have been scaled appropriately.

One of the interesting and important features of the sine-
Gordon PDE is the existence of traveling wave solutions [7], or
‘‘kinks’’, which have been extensively studied both analytically and
numerically [8–12]. Proving the existence of such kinks reduces to
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finding a heteroclinic solution for an ODE. By contrast, proving the
existence of traveling waves in a discretization such as (1.2) is a
more delicate problem since the translation group underwhich the
system is invariant is discrete. The traveling wave in a lattice is, by
definition, the solution x of (1.2) satisfying

xi(t + T ) = xi+1(t) for all t ∈ R

for some T > 0. If we denote x0(t) = ϕ(t), then the above
definition is equivalent to xi(t) = ϕ(t − iT ) (see [13,14]).

The existence of discrete traveling waves has been proven for
small k and a specific range of I , see [4]; in these traveling waves
only one pendulum rotates at a time, one after the other, and the
wave thus travels down the chain. This wave turns out to be or-
bitally stable. As an interesting aside, the spatially discrete model
exhibits a feature not present in the continuous mode, that of the
coexistence of two stable traveling waves of different speeds [4].
Despite its interesting behavior, the case of small k provides no in-
formation about the PDE since in the discretizationϕss ≈

1
h2

(ϕi+1−

2ϕi + ϕi−1) the coefficient k =
1
h2

is large. For large k one cannot
expect each pendulum to be ‘‘too independent’’ of its neighbors.
Rather, one expects travelingwaveswithmany pendula participat-
ing in the motion at any given time (see Fig. 1), as opposed to the
case of k ≪ 1 where only one pendulum rotates at a time. Watan-
abe et al. [15] studied the existence of traveling waves for large
values of k both numerically and experimentally. In this paper, we
prove such an existence for large k and sufficiently small gravita-
tional acceleration. Among other results on traveling waves in lat-
tice differential equations [16–22], there is a work by Katriel [23]
about the existence of traveling waves in Eq. (1.1), where it was
shown, in particular, that for any c and k a traveling wave of any
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Fig. 1. A traveling wave in a chain of pendula with nearest-neighbor torsional
coupling, in the presence of forcing and damping.

velocity (i.e.,with any T ) can be realized by an appropriate choice of
I . The proof is based on reducing the existence of a traveling wave
to a difference–differential equation for ϕ(t) = x0(t) and applying
a fixed point theorem from functional analysis. This approach does
not, however, give information on the dynamics of other solutions
besides the traveling wave.

In this paper we consider the system
ẍi + cẋi + ε sin xi = k(xi+1 − 2xi + xi−1) + I; i ∈ Z (1.3)
which differs from (1.2) in that the gravitational acceleration is ε
rather than 1. We also impose the periodic boundary condition
xi+N = xi + 2π; i ∈ Z (1.4)
which corresponds to a discrete kink; hereN is an arbitrary positive
integer. Instead of an infinite chain, we can thus think of a ring of
N coupled pendula with a twist of 2π (see Fig. 1).

The systemof Eqs. (1.3) can then be rewritten in the vector form
ẍ + cẋ + ∇V (x) = 0; x = (x1, x2, . . . , xN), (1.5)
where the potential V is given by

V (x) =

N
i=1


1
2
k(xi+1 − xi)2 − ε cos xi − Ixi


,

xN+1 = x1 + 2π.

(1.6)

Thus the system of pendula in Fig. 1 can be thought of as a particle
x ∈ RN moving in the potential V sketched in Fig. 2. Note that
the torque I controls the ‘‘slant’’ of the potential, and one expects
that for I above a certain critical value the particle will have to
slide down the trough of the potential. This motion is born of
a saddle–node bifurcation as suggested by Fig. 2. This motion
corresponds to the traveling wave in the chain of pendula.

The bifurcating equilibria are illustrated more specifically in
Fig. 3. For I slightly above a critical value, the traveling wave
behaves as follows: the pendula appear to be almost at rest for
most of the time; during transitional intervals each pendulum
moves clockwise (in this figure), and takes up the previous position
of its neighbor.When observing numerical simulations, the system
appears to be almost at rest most of the time and to undergo
relatively sudden transitions. Such behavior is characteristic of the
trajectories passing the vicinity of the ‘‘shadow’’ of an equilibrium
destroyed in a saddle–node bifurcation. As mentioned, this ‘‘jerky’’
behavior occurs for I slightly above the critical value. Our results,
however, do not put any upper bounds on the torque I .

Remark 1. Heuristic arguments and computational evidence sug-
gest that the sinusoidal potential in our discretized sine-Gordon
equation has an interesting special feature: the critical sad-
dle–node value of the torque required to dislodge the pendula from
equilibrium is exponentially small in N (the number of pendula):
IN = O(εN). This phenomenon is reminiscent of the sharpness of
resonance zones in theMathieu equation [24–26]. In this paper, we
show that the estimate holds for N = 3, planning to address the
general case in a future work.
Fig. 2. Traveling wave viewed as the motion of a particle in a potential field.

Fig. 3. The chain of pendula sags under the gravitational potential.When the torque
overcomes this sag, a traveling wave is born.

Remark 2. The system of Eqs. (1.3) can be interpreted as a
dynamical version of the Frenkel–Kontorova model [6], and the
saddle–node bifurcations giving birth to traveling waves can be
interpreted as de-pinning of electron densities.

2. Results

The periodicity condition (1.4) reduces the system with
infinitely many pendula to one with N degrees of freedom:

ẍ1 + cẋ1 + ε sin x1 = x2 + xN − 2x1 + I − 2π
ẍ2 + cẋ2 + ε sin x2 = x3 + x1 − 2x2 + I
...
ẍN + cẋN + ε sin xN = x1 + xN−1 − 2xN + I + 2π.

(2.1)

Here we take k = 1 for simplicity; the treatment remains the same
for any fixed k.

Our system (2.1) is invariant under simultaneous translation τ
of all the angles by 2π :

τx = τ(x1, . . . , xN) = (x1 + 2π, . . . , xN + 2π) = x + 2π1,
1 = (1, . . . , 1).

Theorem 2.1. There exists ϵ0 > 0 such that for each 0 < ϵ < ϵ0
and for every integer N ≥ 2, system (2.1) has a globally attracting
invariant circle K in the phase space RN(mod τ) × RN . This circle
admits a parametric representation (x(z), v(z)) ∈ R2N with x(z +

2π) = x + 2π1, v(z + 2π) = v(z) (see Fig. 4).

According to this theorem, all the equilibria of system (2.1), if
any, lie on the invariant circle. This essentially gives a complete
description of the system, leaving only two options: (i) if the
torque I is too large for equilibria to exist, then there is a globally
orbitally stable periodic solution (traveling wave), or (ii) if there
exist equilibria, they must lie on the invariant circle, and every
solution approaches an equilibrium.
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Theorem 2.2. There exists ϵ1 > 0 such that for every 0 < ϵ < ϵ1 the
following holds. There exists a constant IN = IN(ε) such that for each
I > IN(ϵ) system (2.1) has a unique traveling wave solution, i.e., a
solution x(t) and T > 0 such that for all t we have

xi(t + T ) = xi+1(t), (2.2)

where xi(t) is defined for all i ∈ Z via xi+N = xi + 2π .

Eq. (2.2) implies that each pendulum takes up the position of
its next neighbor after time T . Applying this equation N times, we
conclude that xi(t +NT ) = xi+N(t) = xi(t)+2π , i.e., after time NT
the chain ‘‘tumbles over’’ once.

Computational evidence suggests that IN(ϵ) = CNεN
+O(εN+1),

where CN > 0.

Theorem 2.3. Consider the case of N = 3, and let 0 < ϵ < ϵ1,
where ϵ1 is from Theorem 2.2. There exists a function I3(ε) =

ϵ3

72 +

O(ϵ4) such that system (2.1) undergoes a saddle–node bifurcation at
I3 = I3(ε), i.e., for I > I3(ε) the system possesses a globally attracting
traveling wave solution and for I < I3(ε) every solution approaches
an equilibrium.

3. Proofs

Proof of Theorem 2.1. The heuristic idea of the proof is illustrated
in Fig. 4. The proof exploits the fact that the flow of system (2.1)
in R2N contracts in a direction transversal to the direction of
simultaneous rotation of all the pendula, in some precise sense.
This contraction is constantly perturbed by the nonlinear terms in
(2.1), but if ε is sufficiently small, this perturbation is dominated
by the contraction. We now make all this precise.

New variables. The following notations are used in the proofs
of the above theorems. Let zi = xi −

2π
N (i − 1); note that zi

measures the deflection from the linear distribution of angles. Set
z =

1
N

N
i=1 zi and define

yi = zi − z. (3.1)

Note that
N

i=1 yi = 0. With the new variables (3.1), the system of
Eqs. (2.1) can be written in the vector form

z̈1 + ÿ + cż1 + cẏ + ε sin(y + z1 + v0) − ∆y = I1 (3.2)

where 1 = (1, 1, . . . , 1)t , y = (y1, y2, . . . , yN)t , v0 =

(0, 2π
N , . . . , 2π

N (N − 1))t , and ∆ is the discrete Laplacian: (∆y)i =

yi+1 − 2yi + yi−1.
To establish the existence of a stable traveling wave solution

(for some values of ε and I) it suffices to show that system (3.2)
has an attracting invariant orbit (z(t), y(t)), as illustrated in Fig. 4,
such that for some T > 0 we have

z(t + T ) = z(t) + 2π, y(t + T ) = y(t) for all t.

Let Y := 1⊥. Note that 1 ∈ ker(∆), Y = ran(∆), and ∆Y : Y → Y
(the restriction of ∆ to the invariant subspace Y ) is an invertible
linear map. By projecting Eq. (3.2) first on 1 and then on Y , we
obtain the equivalent system for the ‘‘center of mass’’ z and the
‘‘shape’’ y:

z̈ + cż +
ε

N

N
i=1

sin(yi + z + v0 i) = I, (3.3)

ÿ + cẏ + επY (sin(y + z1 + v0)) − ∆Yy = 0;
N
i=1

yi = 0,
(3.4)
2

Fig. 4. Schematic representation of an invariant circle in R2N .

where πY : RN
→ Y is the orthogonal projection. Eqs. (3.3) and

(3.4) are then equivalent to the first order system
ż = u

u̇ = −cu −
ε

N

N
i=1

sin(z + yi + v0 i) + I

ẏ = v
v̇ = −cv − επY (sin(y + z1 + v0)) + ∆Yy.

(3.5)

Introducing new variables z1, u1 via z1 := z +
1
c u −

I
c2
, u1 :=

u −
I
c , we recast (3.5) into the form

ẇ = Lw + ω + εR(w), (3.6)

where w = (z1, u1, y, v)t , ω = ( I
c , 0, . . . , 0)

t , R is the vector of
non-linear terms in (3.5) after applying the change of variables z1
and u1, and

L =


0 0
0 Λ


, Λ =


−c 0

0 0 I
∆Y −cI


,

with I being the (N − 1) × (N − 1) identity matrix. The form of
(3.6) suggests that the flow is a combination of translation in the
direction of z1 and a contraction in the remaining directions. We
make this more precise by the following lemma.

Lemma 3.1. The time-1map of system (3.6) is given by:

ϕ1
:


z1 → z1 +

I
c

+ εα(z1,u, ε)

u → eΛu + εβ(z1,u, ε),
(3.7)

where u = (u1, y, v). The functions α and β defined on
{(z1,u, ε); z1 ∈ R, ∥u∥ < 1, 0 < ε < 1} are bounded in C1-norm.

Proof of Lemma 3.1. Applying the variation of constants formula
to the solution of (3.6) with the initial conditionw, we obtain

ϕ1w
(z1,u)t

= eLw + ω + ε

 1

0
e(1−τ)LR(ϕτw) dτ  

(α,β)t

, (3.8)

where the remainder is bounded by 1

0
e(1−τ)LR(ϕτw) dτ

 ≤ max
0≤τ≤1

|R(ϕτw)| ≤ c1, (3.9)

for some constant c1 > 0. Thus α and β are bounded in sup norm.
Now we show that their derivatives are also bounded. Indeed, the
Jacobian matrix Φ(t,w) :=

∂
∂wϕtw satisfies

Φ̇ =
∂

∂t
∂

∂w
ϕtw =

∂

∂w
∂

∂t
ϕtw

=
∂

∂w

Lϕtw + ω + εR(ϕtw)


=

L + εR′(ϕtw)


Φ,
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where R ′ is the derivative of R. Thus
∂

∂t
⟨Φ, Φ⟩ = 2⟨Φ̇, Φ⟩ = 2⟨(L + εR ′(ϕtw))Φ, Φ⟩ ≤ c2⟨Φ, Φ⟩

for some constant c2 > 0. Since Φ is the Jacobian matrix of ϕt , it
follows that α and β have bounded derivatives and thus they are
bounded in C1-norm. �

From here on we omit the subscripts in the variables z1 and u1.
Conclusion of the proof of Theorem 2.1. We first show that the

map ϕ1 given by Eq. (3.7) has an invariant circle, and will then
observe that the same circle is preserved by ϕt . We seek this circle
as the graph of f : R → R2N−1 with f (z+2π) = f (z) and invariant
under ϕ1, i.e. for any z ∈ R there exists ξ ∈ R such that

φ1(z, f (z)) = (ξ , f (ξ)), (3.10)

or equivalently,

f

z +

I
c

+ εα(z, f (z), ε)


= eΛf (z) + εβ(z, f (z), ε). (3.11)

We note that λ := ∥eΛ
∥ < 1.

For any given Lipschitz function f and a given ϵ, choose ξ :=

z +
I
c + εα(z, f (z), ε) as an independent variable (instead of z). By

the implicit function theorem there exists a function gf such that
z = gf (ξ , ε). We show that the functional equation (3.11) has a
unique solution f in the class of Lipschitz functions. Note that this
equation can be rewritten as

f (ξ) = eΛf (gf (ξ , ε)) + εβ(gf (ξ , ε), f (gf (ξ , ε)), ε). (3.12)

To prove the existence of f , it suffices to show that the
functional operator defined by the right hand side of (3.12):

F (f ) := eΛf (gf ) + εβ(gf , f (gf )), (3.13)

(abbreviating gf ≡ gf (ξ , ε), etc.) acting on the space of Lipschitz
functions on R has a unique fixed point. To this end, we show that
F is a contraction map. We note that F maps periodic functions
of period 2π to periodic functions of the same period. To prove the
contraction property, we will estimate

F (f ) − F (h) = eΛ

f (gf ) − h(gh)

  
A

+ ε

β(gf , f (gf )) − β(gh, h(gh))

  
B

(3.14)

for any two Lipschitz functions f and h with a Lipschitz constant l.
First, we rewrite A as

|A| = |f (gf ) − h(gh)| = |f (gf ) − f (gh) + f (gh) − h(gh)|
≤ |f (gf ) − f (gh)| + |f (gh) − h(gh)|.

Since f is a Lipschitz function, from the last inequality we have:

|f (gf ) − h(gh)| ≤ l|gf − gh| + ∥f − h∥, (3.15)

where ∥ · ∥ denotes the sup norm. We need to estimate |gf − gh|.
By the definition of gf

ξ = gf +
I
c

+ εα(gf , f (gf )), ξ = gh +
I
c

+ εα(gh, h(gh)).

Thus

gf − gh = εα(gh, h(gh)) − εα(gf , f (gf )). (3.16)

Now from Lemma 3.1 and using themean value theorem on the
right hand side of (3.16) we have:

|gf − gh| = ε|α(gf , f (gf )) − α(gh, h(gh))|
≤ ε∥α1∥|gf − gh| + ε∥α2∥|f (gf ) − h(gh)|,
where α1 and α2 are the derivatives with respect to the first and
second arguments. Thus from the last inequality we get:

|gf − gh| ≤
ε∥α∥1

1 − ε∥α∥1
|f (gf ) − h(gh)|, (3.17)

where ∥α∥1 := max{∥α1∥, ∥α2∥}. Now from inequalities (3.15)
and (3.17) we have:

|A| = |f (gf ) − h(gh)| ≤ d∥f − h∥, (3.18)

where d =
1−ε∥α∥1

1−ε(1+l)∥α∥1
. This is the desired estimate of A. Now to

estimate B, note that

|β(gf , f (gf )) − β(gh, h(gh))| ≤ ∥β∥1(|gf − gh| + |f (gf ) − h(gh)|),

where ∥β∥1 := max{∥β1∥, ∥β2∥}, and β1 and β2 are the
derivatives with respect to the first and second arguments. Using
estimates (3.17) and (3.18), the last inequality is simplified to:

|B| = |β(gf , f (gf )) − β(gh, h(gh))| ≤ d′
∥f − h∥, (3.19)

where d′
=

∥β∥1
1−ε(1+l)∥α∥1

. Now using bounds (3.18) and (3.19) in
(3.14), we show that F is indeed a contraction:

|F (f ) − F (h)| = |eΛA + εB|
≤ d∥eΛ

∥∥f − h∥ + εd′
∥f − h∥

≤ (λd + εd′)∥f − h∥.

Note that for ε < ε0 :=
1+λ(1−2d)

2d′ , we have λd+εd′ < 1+λ
2 < 1.

Thus F is a contraction map and has a unique fixed point. This
proves the existence of a unique curve K which is invariant under
the time-1 map φ1:

φ1K = K . (3.20)

We claim that K is then invariant under the flow φt for any time
t . Indeed, applying φt to both sides of (3.20) we get:

φt(φ1K) = φtK , (3.21)

and since φt and φ1 commute, we have:

φ1(φtK) = φtK . (3.22)

Now the uniqueness of K implies that:

φtK = K , (3.23)

as claimed. This concludes the proof of Theorem 2.1. �

Proof of Theorem 2.2. For any 0 < ε < ε0, where ε0 is from
Theorem2.1, the systempossesses an invariant circle, for any I . We
show that for I greater than a certain critical value system (2.1) has
no equilibria. This, we claim, implies the existence of a traveling
wave solution, i.e., a solution satisfying (2.2). Indeed, since the
invariant circle contains no equilibria, it is an orbit of some solution
x(t) (this solution is periodic modulo 2π-translations: x(t + p) =

x(t) + 2π1 for some p > 0 and for all t). Since the system is
invariant under the translation of index, the translated function
σx(t) := (x2, x3, . . . , xN , x1 + 2π) is a solution as well, also
periodic modulo 2π-translations and thus lying on the invariant
circle. Since the invariant circle is a global attractor, these two
solutions coincide up to a time shift: for some T > 0 we have

σx(t) = x(t + T ) for all t;

this proves (2.2).
To compete the proof of Theorem 2.2 it remains to show that

the equilibria disappear for I exceeding some critical value. The
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equilibria of the systemare obtainedby setting the timederivatives
to zero in (3.3) and (3.4):

ε

N

N
i=1

sin(yi + z + v0 i) = I (3.24)

επY (sin(y + z1 + v0)) − ∆Yy = 0. (3.25)

Since for sufficiently small ε the function of y given by

Fz,ε(y) := επY (sin(y + z1 + v0)) − ∆Yy (3.26)

is a small perturbation of the invertible linear map ∆Y on Y , the
implicit function theorem implies that there exists ε′

0 > 0 such
that for any 0 < ε < ε′

0 and for any z ∈ R there exists a
unique y0 = y0(z, ε) ∈ Y (y0 depends smoothly on z and ε) such
that Fz,ε(y0(z, ε)) = 0, i.e., y = y0(z, ε) satisfies Eq. (3.25), or
equivalently

ε sin(y0(z, ε) + z1 + v0) − ∆Yy0(z, ε) = IN(z, ε)1, (3.27)

where

IN(z, ε) =
ε

N

N
i=1

sin

y0 i(z, ε) + z +

2π
N

(i − 1)


. (3.28)

We define ε1 := min{ε0, ε
′

0}, and let ε ∈ (0, ε1). Now for
(z, y) = (z, y0(z, ε)) to be an equilibrium, we must choose z so
that (3.24) holds, or equivalently, in the notation (3.28):

IN(z, ε) = I.

To summarize, the existence of equilibria reduces to a single scalar
equation for z. Let now IN(ε) := sup{IN(z, ε), z ∈ R}. It can be
easily checked that IN(ε) ≤ ε (computational evidence suggests
that, in fact, IN(ε) = CNεN

+ O(εN+1) with CN > 0). For I > IN(ε)
there are no equilibria, and thus all solutions approach a traveling
wave solution. �

Proof of Theorem 2.3. We must study the equilibria of (2.1), or
equivalently, of (3.2) for N = 3. Since

3
i=1 yi = 0 according to

(3.1), equilibria of (3.2) satisfy
ε sin(y1 + z) = −3y1 + I

ε sin

y2 + z +

2π
3


= −3y2 + I

ε sin


−(y1 + y2) + z +
4π
3


= 3(y1 + y2) + I.

(3.29)

Adding up Eqs. (3.29) gives I = O(ε), and as a result

yk = O(ε), k = 1, 2, 3. (3.30)

Again adding up Eqs. (3.29) and noting that
3

i=1 sin(z + (i −

1) 2π
3 ) = 0, we have:

I =
ε

3

3
i=1

sin

yi + z + (i − 1)

2π
3



=
ε

3

 3
i=1

sin

z + (i − 1)

2π
3


  

=0

+O(|y1| + |y2|)


= O(ε2).

Using this and (3.30) in (3.29) we have:

y1 =
−ε

3
sin z + O(ε2), (3.31)

y2 =
−ε

3
sin

z +

2π
3


+ O(ε2). (3.32)
Adding up Eqs. (3.29) again, substituting (3.31) and (3.32), and
keeping the first two terms of the Taylor expansion, we discover
that O(ε2) terms cancel:

I =
ε

3


sin z + cos z


−ε

3
sin z


+


sin

z +

2π
3


+ cos


z +

2π
3


−ε

3
sin

z +

2π
3


+


sin

z +

4π
3


+ cos


z +

4π
3


×


ε

3


sin z + sin


z +

2π
3


+ O(ε3)

=
ε

3

3
i=1

sin

z + (i − 1)

2π
3


  

=0

−
ε2

9

3
i=1


cos


z + (i − 1)

2π
3



× sin

z + (i − 1)

2π
3


+ O(ε3)

=
−ε2

18

3
i=1

sin

2z + (i − 1)

2π
3


  

=0

+O(ε3)

= O(ε3).

We thus need to considerO(ε3)-terms. Adding up Eqs. (3.29) again,
and substituting (3.31) and (3.32) gives:

I3(z, ε) =
−ε3

54


3

i=1

sin3

z + (i − 1)

2π
3


+ O(ε4). (3.33)

Using the identity

3
i=1

sin3

z + (i − 1)

2π
3


=

−3
4

sin 3z, (3.34)

proven in the next paragraph, we obtain:

I3(z, ε) =
ε3

72
sin 3z + O(ε4). (3.35)

Thus for N = 3 the equilibria Eqs. (3.24) and (3.25) reduce to

I = I3(z, ε) =
ε3

72
sin 3z + O(ε4). (3.36)

Let I3(ε) := sup{I3(z, ε), z ∈ R}. According to Theorem 2.2 the
system undergoes a saddle–node bifurcation at I = I3(ε).

Proof of identity (3.34). Note that Im(e3zi) = Im(cos z + i sin z)3
= 3 sin z −4 sin3 z. Using this identity by shifting z bymultiples of
2π/3 we get

2
k=0

Im

e3i

z+k 2π

3


= 3

2
k=0

sin

z + k

2π
3


  

=0

− 4
2

k=0

sin3

z + k

2π
3



= −4
2

k=0

sin3

z + k

2π
3


.

On the other hand,
2

k=0 Im(e3i(z+k 2π
3 )) = 3 Im(e3zi) = 3 sin 3z.

Comparing the last two results gives (3.34). �
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4. Conclusion

In this paper, we proved the existence of traveling wave
solutions for the periodic lattice of coupled pendula when the
gravity ε is less than a certain constant, or, equivalently, if the
coupling is sufficiently large. It should be pointed out that in
certain ranges of ε and I the system does exhibit chaotic behavior.
Since our proofs are essentially constructive, explicit rigorous
bounds guaranteeing a unique globally stable traveling wave can
be obtained, in a way similar to how it was done for a simpler
case in [27]. Future directions of this work include exploring the
estimate on the critical saddle–node torque for the sinusoidal
potential for a general N , as well as the more general periodic
potentials, and the relationship of this question to other similar
phenomena described in [24–26] such as the degree of contact
between the boundaries of resonance zones for Mathieu-type
equations or between Arnold tongues in circle maps.
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