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Foucault’s Pendulum with a Twist
While teaching a mechanics course, 

I stumbled upon the following amusing 
observation. It is well known that small-
amplitude trajectories of a pendulum are 
approximately ellipses (see Figure 1). 
Indeed, the linearized equations for the 
( , )x y  coordinates of the bob are
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with ω2=g L/ ;  g is the gravitational acceler-
ation and L is the length of the pendulum. The 
general solution is x a t b t= +cos sin ,ω ω  
y c t d t= +cos sin .ω ω  This is a paramet-
ric representation of an ellipse centered 
at the origin. Indeed, ( , )x y  is the image 
of the unit circle (cos , sin )w wt t  under 
the linear map whose matrix has elements 
a b c d, , , .  Figure 2 illustrates the three 
types of motions.

Now let’s put ourselves in a frame cen-
tered at the origin and rotating with angular 
velocity w,  where w  is the same as above: 
the frequency of the pendulum. How will 
the elliptical motions of the pendulum look 
in this new frame?

Perhaps surprisingly, the answer is circu-
lar, and with a constant speed. Moreover, 

the angular velocity of these circular 
motions is 2w,  twice the frequency of the 
pendulum (see Figure 3). The circle passes 
through the origin precisely if the angular 

momentum is zero. And the circle in the 
rotating frame is centered at the origin if the 
ellipse in the inertial frame is a circle.

Here are two explanations of 
this phenomenon, from two dif-
ferent angles.

Explanation 1. This explana-
tion is based on the observation 
that any solution of r r= −ω2  
is a combination of two circu-
lar motions, one counterclockwise and 
the other clockwise. In complex notation 
r= +x iy,  the general solution is

            r= + −Ae Bei t i tω ω ,

where A and B are arbitrary complex con-
stants. It follows that the solution in the 
rotating frame is

	       A Be i t+ −2 ω ,

as claimed.
Explanation 2. In addition to the restor-

ing force, the bob in the rotating frame 
perceives two additional inertial (fictitious) 
forces acting on the bob: the centrifugal 
force w2R,  where R  is the bob’s position 
expressed in the rotating frame, and the 
Coriolis force −2iω R.  The apparent accel-
eration is thus the sum of the two inertial 
forces and the forces of the spring:

 
 
  R R R R R=− + − =−ω ω ω ω2 2 2 2i i
		  (2)

(formally, one obtains (2) by substituting 
r R= ei tω  into r r=−ω2  and simplify-
ing). Note that the centrifugal force cancels 
the restoring force!

According to (2), the 
particle in the rotating 
frame is subject to the 
force normal to its veloc-
ity, same as the Lorentz 
force on a charged par-
ticle in the magnetic field 
of magnitude 2w  and 
normal to the plane. This 
demonstrates that the tra-
jectories are circles (just 
as the trajectories of a 
charged particle are in the 

constant magnetic field perpendicular to the 
plane of the particle’s motion).

Interestingly, passage to the rotating 
frame replaces the Hookean 
force by the Coriolis force, 
as just indicated.

The above equivalence 
is reversible; we conclude 
that the particle in a constant 
magnetic field, viewed in an 

appropriately rotating frame, behaves exact-
ly as the planar harmonic oscillator (1).

 I end with a tongue-in-cheek application 
to the Foucault pendulum, mounted over 
the North Pole. Wishing to match the pen-
dulum’s frequency to the Earth’s angular 
velocity, we choose the length L to satisfy
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this gives L » 1 176, miles. A Foucault 
pendulum of this length, mounted over the 
North Pole, will execute circular motions 
of the type shown in Figure 3, making one 
revolution in 12 hours — provided that we 
raise the suspension point by, say, 100 miles 
to take the bob out of the atmosphere and 
prevent viscous drag. On a more realistic 
note, to observe this effect on a carousel 
making one revolution in six seconds, the 
length of the pendulum must be around 10 
meters.
A more detailed discussion of this problem 
can be found in [1].

The figures in this article were provided 
by the author.
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Figure 1. A small-amplitude motion of a 
spherical pendulum.

Figure 2. Elliptical trajectories of (1) with negative, zero, and posi-
tive angular momentum respectively.

Figure 3. Trajectories in the frame rotating counterclockwise with angular velocity w,  with 
negative (A), zero (B), and positive (C) angular momenta. The lengths a and b in (A) are the 
semiaxes of the ellipse in Figure 2.
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