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When a hot and cold object are brought 
into contact with each other, their tempera-
tures converge. And because temperatures 
have no inertia, they cannot “overshoot” 
and reverse. But nature found a remark-
able way to overcome this constraint of the 
second law of thermodynamics and (nearly) 
exchange the two substances’ temperatures 
(see Figure 1).

The Construction
The two liquids flowing in opposite direc-

tions are separated by a heat-conducting 
membrane. I claim that the temperatures of 
the two fluids will become nearly reversed: 
0°  water will heat to 100°−e,  while 100° 
water will cool to e  degrees, with an arbi-
trarily-small e  (e= °1  in Figure 1).

How it Works
Figure 1 depicts a discrete approxima-

tion: we imagine each fluid split into n  
cells and replace the continuous motion 
with a jerky one. First we allow tempera-
tures in adjacent cells across the membrane 
to settle to the common one (these will be 
slightly different in practice, contributing 
to e  in the preceding paragraph), and then 
we let each fluid quickly advance by one 
cell. This brings T

k-1
 and T

k+1
 into contact 

with one another. They settle to the com-
mon new temperature
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(the top will actually be slightly colder but 
we ignore this; we also ignore heat exchange 
between cells in the same pipe). In short, (1) 
is a discretization (in space and time) of the 
heat equation. Indeed, we can write it as
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with T
0

0=  (a new cell at 
0°  enters from the left) and 
T
n+ =1 100  (a new cell at 100° 

enters from the right). The tem-
perature profile will advance 
towards a linear one regard-
less of initial temperature dis-
tribution; the first cell will thus approach 
T n
1
100 1= +/( )  while the last cell will 

approach T n
n
= − +100 100 1/( ).  A larg-

er n  means a more perfect 
temperature swap.

The key to the opera-
tion of the heat exchang-
er is that the temperature 
differences are small in 
every heat exchange: 
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.  This prox-
imity of temperatures 
makes for a small entro-
py increase. When heat 
Q  passes from an object 
at temperature T

a
 to an 

object at temperature 
T T
b a
< , the entropy of 

A Near-perfect Heat Exchange
the system consisting of these two objects 
increases by
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a small amount if T T
a b
» ,  even in Q  is not 

small (here, T  is the absolute temperature, 
not the centigrade). Since T T

k k+ −≈
1 1

,  the 
heat exchanger increases entropy by less 

than an unintelligent design 
would. Speaking of intelli-
gent design, biological evolu-
tion showed intelligence in 
“inventing” the heat exchang-
er. For example, deep veins in 
our arms run along the arter-

ies, just like the two tubes in Figure 1 — the 
top tube represents a vein and the bottom 
one represents an artery. In cold weather, 

the outgoing arterial blood warms the cold 
venous blood coming from the hands; this 
helps maintain core body temperature.

The entropy’s near-constancy signals 
the near-reversibility of the process [1]. 
This near-reversibility is also directly 
apparent from our ability to run Figure 
1’s outputs through another exchanger and 
nearly return to the original temperatures 
(e.g., to 2°  and 98°).
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Figure 1. Beginning with equalized temperatures in adjacent cells (top), the cells advance (middle) and the tempera-
tures of adjacent cells (nearly) equalize. This completes the cycle. Figure courtesy of Mark Levi.


