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A glass cylinder—essentially a thick, 
flat lens—is neither focusing nor 

defocusing in the sense that entering par-
allel beams remain parallel as they pass 
through, width unchanged.1

Let us now cut this slab and open the 
gaps a bit to obtain a series of lenses (see 
Figure 1). The alternating focusing and 
defocusing effects should presumably can-
cel out, just as they did before we spread 
the lenses apart. Interestingly, this pre-
sumption is wrong; instead, the gaps turn 
the neutral slab into a focusing device. For 
some mysterious reason, focusing always 
“wins” over defocusing.

Why Does Focusing Win:               
a Variational Explanation

It suffices to show that the lens is “opti-
cally thicker” between points A  and B 
than between A

1
 and B

1
,  just as a mag-

nifying glass is thicker in the middle than 
near the edge:

			 
			       (1) 
            

T T
AB AB1 1

< ,

where T  is the light’s travel time between 
two points.

To justify (1), it suffices to produce 
a path between A

1
 and B

1
 that would 

1 In contrast, any optical device that narrows 
parallel beams is automatically a telescope; 
it magnifies objects regardless of its internal 
workings. This is a consequence of the sym-
plectic nature of geometrical optics. More 
details are available in [1].

Getting Focused

has a nice physical meaning: it is the 
reciprocal of the lens’ focal length2 f ,  
s f=1/ . Indeed, an incoming ray parallel 

to the axis (see Figure 3) 
refracts and passes through 
the focus (by definition of 
the latter). On the other 
hand, f x y=

1 1
/  (“run=rise/

slope”); but setting y
0

0=  
in (2) yields x y s
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that f s=1/  as claimed. The transition map 
( , ) ( , )x y x y
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  is given for the gap of 
width d—according to Figure 2—by
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In summary, a 
Gaussian lens with 
focal length f  cor-
responds to the verti-
cal shear of strength 
s f=1/  with the 
shear’s sign dependent 
on the lens’ status as 
defocusing or focus-
ing. The empty gap of 
width d  corresponds 
with the horizontal shear of strength d.

Let us now consider the sequence 
“Focusing→Gap→Defocusing→Gap.” 
This combination of lenses corresponds to 
the product (read from left to right)
 
 	  			                        	
	    

M HV HV= + −,

assigning the outgoing data to the incoming 
data. Multiplication shows that

2  Normally f , is taken to be negative for 
defocusing lenses, but we do not do this here.

take less time than path AB (this 
path need not be the actual path 
of light). Figure 1 depicts such a 
path. Starting with straight line 
A B

1 1
—whose optical length is the 

same as that of AB—we move 
the segments passing through the 
lenses towards the thinner direc-
tion of each lens, thus shorten-
ing the path’s “expensive” part 
in which the light travels more 
slowly (we assume that the light 
travels much slower in the glass). 
Provided this displacement is not too far, 
the time savings in the glass will exceed 
the time gain in the air and the 
new path will indeed be short-
er. In fact, the light’s true path 
will zigzag roughly as shown 
(with an additional gentle 
bend away from the axis), 
according to Snell’s law.

An Alternative Explanation
Unlike in the previous discussion, we 

now assume that the lenses are negligibly 
thin and the break in the ray’s slope is 
linearly proportional to the distance from 
the optical axis to the point of passage 
through the lens. In other words, our lenses 
are Gaussian. When superimposed, the two 
such lenses cancel out exactly as if they 
were not there at all. To see why focusing 
wins upon separation, we convert the prob-
lem into a question about matrices.

A ray that enters or exits the lens is 
described by the pair ( , ),x y  
where x  is the distance from 
the point of crossing the lens 
to the axis and y  is the ray’s 
slope (see Figure 2). By the 
definition of the Gaussian 
lens, its “transition map”—
i.e., assignment of the exit 
data to the entrance data—is
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The sign ±  corresponds to 
defocusing/focusing lens-
es and the coefficient s  
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Figure 1. Separation causes focusing. The optical length of 
the path A B

1 1
 (not a true ray) is shorter than that of AB.
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If we also assume that d<2f —the gap 
is less than twice the focal lengths—then 
| | .trM < 2  Together with detM =1,  this 
implies that M  is an elliptic rotation; and 
this implies that the combination of lenses 
F-G-D-G is a focusing device.

It is interesting that we arrived at essen-
tially the same result via two arguments 
that are so different from one another: the 
variational one in Figure 1 and the matrix 
argument. This shows that the purely alge-
braic result (4) on matrix multiplication is 
not actually purely algebraic and instead has 
an alternative variational explanation.

As an aside, a series of lenses gives rise 
to the product of matrices. A nice under-
graduate project would be to build an opti-
cal “matrix multiplier” (for 2 2´  matrices 
of determinant one).

The figures in this article were provided 
by the author.
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Figure 2. Gaussian lens: vertical shear is negative for a magnifying lens and positive for a dispersing 
one. A gap of width d  represents the horizontal shear of strength d.

Figure 3. Focal length is the reciprocal of the shear’s 
strength: f s=1/ .


