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Tension Is Linear 
When driving down a country road and 

seeing hanging electric cables by the road-
side, I marvel at nature’s ability to solve 
a minimization problem; out of all pos-
sible shapes, it finds the one with the 
least potential energy. These hyperbolic 
cosine-shaped cables have another interest-
ing property: their tension depends linearly 
on the height h  (see Figure 1):
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0
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Here, r  is the cable’s linear density — 
i.e., the mass per unit length. This is remi-
niscent of Pascal’s law p p gh− =

0
r  for 

the water pressure at depth h;  in this case—
unlike in (1)—r  stands for the water’s den-
sity. It is not a coincidence; one can think of 
the hanging rope as a one-dimensional fluid 
wherein the tension corresponds to pres-
sure in the water and unstretchability cor-
responds to incompressibility. In fact, the 
same energy-conservation argument proves 
both (1) and Pascal’s law. The argument 
goes as follows. I begin by holding a sta-
tionary chain by its two ends, then advance 
each end by small distance ds  in such a way 
that every particle of the chain advances 
along the curve (see Figure 2).

Indeed, the weight of the segment ds  in 
Figure 3 is supported by the vertical tension:
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With ds® 0, this becomes T k g
0

= r  — 
where k  is the curvature. This amounts to (2).

By combining (1) and (2), we get
T m g R h= +r ( ); that is, the tension equals 
the weight of the cable of length R h+ .

Area and Length
The catenary—i.e., the graph of the 

hyperbolic cosine—has 
a remarkable property: the 
area under the arc above any 
interval equals its length (see 
Figure 4). That is,
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if f = cosh.
One can either check this by substitution 

or deduce it by differentiating (3) and solv-
ing the resulting ordinary differential equa-
tion (ODE) for y f x= ( ):

            y y y′= − =2 1 0 1, ( ) . 	  (4)

The initial condition y( )0 1=  results 
from substituting x = 0 into the derivative 
of (3). Separation of variables and some 
manipulation leads to y x= cosh .

Uniqueness
Is cosh the only function with this prop-

erty? A quick reflection—or a look at (3)—
shows that the constant f x( )º 1 has the 
same property. This initially worried me: 
where did I lose the answer when solving 
(4)? Having two solutions for the same ODE 
signals that the uniqueness theorem does 

not apply; indeed, y2 1-  fails assump-
tions of every uniqueness theorem at y =1. 
With the two solutions f x x( ) cosh=  and 
f x( ) ,º1  infinitely many others must also 
exist (according to a theorem of Kneser 
and Zaremba). However, these solutions 
are not very interesting; they are simply 
concatenations that are defined, for an 
arbitrary c, by f x( )º 1 for x cÎ[ , ]0  and 
f x x c( ) cosh( )= −  for x c> .
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The advancing hand did work T ds  and 
the retreating hand did work -T ds

0
; the 

minus is due to the fact that the applied 
force points against the dis-
placement. The result of this 
motion is now the same as 
simply raising the element 
ds  by height h, with the 
change of potential energy 
dmgh dsgh=r .  Therefore,

T ds T ds ds gh− =
0

r ,

which amounts to (1). One can apply the 
exact same argument to prove Pascal’s 
law, although textbooks do not usually 
take this approach.

Curvature and Tension
Can one “see” the tension T

0
 at the 

lowest point of the cable? 
If one knows r  (the lin-
ear density), the answer is 
yes. T

0
 is the radius R  of 

curvature, up to a factor:
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Hanging Cables and Hydrostatics

Figure 1. Tension in a hanging cable varies linearly with height.

Figure 2. Advancing the cable by ds changes 
its potential energy by dmgh dsgh= r  and 
takes work ( ) .T T ds-

0

Figure 3. Proving that tension at the lowest point is propor-
tional to the radius of curvature.

Figure 4. For the catenary, A L= .
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