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To quote Richard Feynman from [2]: 

“I was in the cafeteria and some guy, fooling 
around, throws a plate in the air.  As the plate went 
up in the air I saw it wobble, and I noticed the red 
medallion of Cornell on the plate going around. It 
was pretty obvious to me that the medallion went 
around faster than the wobbling. I had nothing to 
do, so I start to figure out the motion of the rotating 
plate. I discover that when the angle is very slight, 
the medallion rotates twice as fast as the wobble 
rate — two to one.1 It came out of a complicated 
equation! Then I thought, ‘Is there some way I 
can see in a more fundamental way, by looking at 
the forces or the dynamics, why it’s two to one?’ 
I don’t remember how I did it, but I ultimately 
worked out what the motion of the mass particles 
is, and how all the accelerations balance to make it 
come out two to one.”

Later in [2], Feynman writes that “The 
[Feynman] diagrams and the whole business 

1 Actually it is the other way around; the 
wobble is twice as fast as the spin.

Feynman’s Flying Saucer Explained
the ground frame. This completes the expla-
nation of the 1:2 ratio; it remains to prove 
that m  indeed moves as Figure 1 indicates.

Explaining the Motion                  
of m  in Figure 1

The plate’s angular velocity ωω  is 
related to m via ωω == −−I m1 ,  where 
I = diag( , , )I I Ix y z  is the tensor of inertia 
whose diagonal entries are the moments of 
inertia with respect to the corresponding 
axes. Since the moment of inertia around 
the z-axis is twice that around the diam-

eter, we have I = Izdiag( , , ).
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satisfies Euler’s equation                	  		                   	
   	        

m m I m� � �1 .  	  (1)	
	

The derivation of (1) is 
immediate by a creative appli-
cation of the familiar formula 
v r= ×ω .  Indeed, to the 
observer on the flying sau-
cer, the surrounding space is 

rotating with angular velocity −−ωω  and the 
angular momentum vector’s tip is like a 
particle affixed to the surrounding space. 
The apparent velocity of this “particle” is 
thus given by

               m m== −− ××( ) ,ωω

which amounts to Euler’s equations (1) 
upon substitution ωω == −−I m1  (a standard 
derivation of Euler’s equation in [1] or [3], 
for example, takes a little over half a page).

Finally, Euler’s equations (1) become
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Now m Iz z z/ = ω  is exactly the angular 
velocity around the z-axis, and is constant 
according to the last equation. Based on the 
first two equations, the vector ( )m mx y,  exe-
cutes circular motion with angular velocity 
ωz . This completes the explanation of m’s 
motion that is sketched in Figure 1.

The figures in this article were provided 
by the author.
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that I got the Nobel Prize for came from that 
piddling around with the wobbling plate.”

Here I offer a quick explanation of 
Feynman’s observation. Figure 1 gives a 
summary.

Watching a Star from                     
the Flying Saucer

The angular momentum of the plate in 
flight is fixed because the torque that acts 
on the plate is zero, neglecting the effect of 
air. Let m = ( , , )m m mx y z  be the expres-
sion of the angular momentum in the xyz-
frame that is glued to the plate (see Figure 
1). As the plate wobbles, m  changes; 
we will show that m  spins around the 
z-axis as in Figure 1, where ω  actu-
ally turns out to be precisely 
the angular velocity ωz  of 
the plate’s spin around the z
-axis. This fact is of indepen-
dent interest and demonstrates 
two roles of ω: (i) the rate of 
the plate’s spin (as viewed by 
someone on the ground), and (ii) the rate of 
m’s spin around the z-axis in the eye of the 
observer stuck to the plate. Postponing the 
proof that m moves like in Figure 1, here is 
an explanation of Feynman’s observation.

Explaining the 1:2                    
Spin-to-wobble Ratio

Segment AM  in Figure 1 rotates at the 
angular velocity � �� z  relative to the 
plate, according to the claim in the previous 
paragraph. And the plate itself rotates with 
an angular velocity of magnitude ≈ω  and 
closely aligned with the angular momentum 
if the wobble is small (see Figure 2). The 
sum of these angular velocities is ≈2ω;  it is 
the angular velocity of the z-axis around the 
fixed direction of the angular momentum in 

Figure 1. To an observer attached to the 
plate, m spins around the plate’s z-axis with 
angular velocity ω.  And to the ground observ-
er, this entire picture spins as well — at the 
rate ≈ω  and with angular velocity closely 
aligned with the z-axis (assuming small wob-
ble). In short, the combined angular velocity 
of the z-axis around the angular momentum 
direction—i.e. the rate of wobble—is ≈2ω. 
This explains Feynman’s observation.
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Figure 2. View for the ground observer on 
the plate. The plate’s rotation is added to the 
rotation of AM  relative to the plate, yielding 
the rate of rotation of AM  in space.


